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There has been substantial success in predicting the heats of formation of binary alloys both with ab-initio

and semiempirical methods (1-8). There is still a good deal of progress to be made, however, in that

experimental trends in the cohesive energies, heats of formation and lattice parameters as a function of

composition are often not accurately reproduced.

Recently, a new method for the computation of alloy formation and defect energies was introduced by

Bozzolo, Ferrante and Smith (BFS) (7). We tested the method ability to predict the heat of formation a_ a
function of alloy composition for disordered binary alloys. In this paper we present a further property of

interest, the variation of the lattice parameter with composition. At present, Vegard's law (9), which is a
simple compositional linear average, is the primary method of choice. However, it is well known that the lattice

parameter variation often deviates from linearity (10). In this paper we present the predictions of the BFS

method for the lattice parameter. A second goal of this paper is to provide a simple formulation of the

algorithm for performing defect calculations. We will see that accurate prediction of the composition dependence

of lattice parameters can be made with our simple method.

BFS (7) requires information only about pure metal properties and certain experimentally determined alloys

properties. We build on the formulation of equivalent crystal theory (ECT) (11-12), by dividing the total

binding energy of the alloy into a chemical energy and a strain or structural energy (see, e.g., Refs. 2-4). We

now outline the procedure for calculation of the heat of formation and lattice parameter versus concentration

for fee binary alloys. We first apply the method to ordered alloy structures and then use the Connolly-Williams

(CWM) (13) procedure for relating the ordered compounds to the disordered ones.

Consider a unit cell containing N x atoms of atomic species X, (X = A,B,...), so that the total number of

atoms in this cell is given by N = EX NX" The heat of formation of this cell is

AEceu = Ecell - _ NxEx (1)
X

where Ecell is the total energy of the cell and E X is the energy of an atom of species X in a pure crystal of
its own species. IF E'(i,X) denotes the energy of the i th atom in the cell (i = 1,...,Nx) of species X then

N x N×

AEon,,: E E E'(i,x)- Ex= E E o,,x.
X i=l X i=l

(2)

In our simulation of the process of alloy formation, each individual atom undergoes two separate
transformations with respect to its initial state given by a perfect, pure crystal of its own species. Each

transformation contributes to the heat of formation of the alloy.

The first process (strain energy) deals with the structural change arising from neighbor locations in the alloy

being different from in the elemental single-crystal environment. In order to compute the strain enel'gy of the
S

i-th atom of species X, ei,_x, we just 'flip' every atom in the actual alloy structure, surrounding atom (i,X), into
an atom of the same specms X, and perform a regular ECT calculation (see Ref. 12 for details). Then,

ei,x



x
where a x denotes the equilibrium lattice constant of a pure X crystal, E c is the cohesive energy and lx is a

e s
scaling length (12). Tile equivalent lattice parameter ai, x is determined by solving the appropriate ECT
equation applied to atom (i,X), in the defect (but pure) crystal (12). For the simple case considered in this

work, ai,xs is just the actual alloy lattice parameter. The second process deals with the changec in chemical

composition. The chemical energy contribution to the heat of formation from atom (i,X), ei,x, is the energy
change due to some neighbors of atom (i,X) being of a different atomic species. Here, we 'freeze' the neighbor

locations to be those corresponding to a pure X crystal allowing only for a change of identity of the neighboring

atoms. Rigourously, this change in chemical composition cannot be considered a 'defect' in the context of ECT.

However, to a good approximation, the underlying concepts of ECT should remain valid in the case of alloys,

and we will adopt a similar formulation to describe the perturbation due to the dissimilar atomic species. We

assume that the global property parameterized by the ECT parameter a (12) (i.e., the tails of the overlapping

electron densities} can be separated into pairs of interacting atoms. In this approximation, the electron density

in the region between two atoms of the same species would be unaffected by the presence of neighboring atoms

of a different species so that the perturbation would be localized in the region between two dissimilar atoms.

This a-_sumption enables us to define the parameter aXy as aXy = a X + Ayx , where a x is the a value

for the pure metal X and Ayx is a correction introduced by the presence of a neighbor of species Y. The

parameters Ayx and AXy are the only new parameters introduced in our method, and they will be

determined by fitting to appropriate experimental data.

With the introduction of the parameters Ayx and AXy we can compute the chemical energy of atom (i,X)
c

using ECT. The chemical energy ei,x is obtained by performing two similar ECT calculations:

: o x/0/ (4>ei,x

For the first term, as explained above, the chemical composition is included in the appropriate value of A.y,x

C _

with 7i.x = 1 if ai, x > 0 and 7i,x =

the following ECT equation (12)

c is obtained by solving-1 otherwise. The equivalent lattice parameter ai, x

p, _ ll_ _x _xN R i e _xal + M e

Px '_xJPx ayxrl

= _Nyxr t e + Myxr 2 e
Y

where N (M) is the number of nearest-(next-nearest)-neighbors in a perfect crystal of species X,RI(R2) is the
c The sum on the

nearest-(next-nearest}-neighbor distance in the equivalent crystal of lattice parameter ai, x.

r.h.s, of Eq. (6) is over the atomic species Y of the Nyx (Myx) nearest-(next-nearest)-neighbors of atom (i,X)

located at a distance rl(r2). The second term in Eq. (4), el,x(0 } involves a calculation similar to Eqs. (5-6) but

with Ayx = 0. This is done in order to free the chemical energy from any structural defect (e.g., a surface}
thus retaining only the contribution of the chemical composition of the surroundings of atom (i,X).



Finally, the contribution ei,x of atom (i,x) to the heat of formation (Eq. {2)) is

s c (7)
el, X = ei, X + gi,xei,x

S*

-%x ensures that thewhere the coupling factor between the strain and chemical energy contributions, gi,x = e

chemical energy vanishes at large interatomic distances.

In this work, we are concerned with the fcc-based disordered binary alloys AxBl.x, which, in keeping with

CWM, we will compute from the corresponding ordered structures AmB4_rn(m = 0(B,fcc); I(AB3,LI2);

2(AB,L10); 3(AsB,L12); 4(A,fcc)). If no relaxation of the individual atomic sites is allowed, then the strain
$

energy, ex, is given by Eq. 3 with a" =x r, where r is the actual interatomic distance. Within this

approximation, the second term in the chemical energy (Eq. (4)) vanishes, since there are no structural defects.

For a given ordered structure m, the ECT equation for the equivalent lattice parameter a c (Zq.

= __ c = _ r2 and r 2 = a x. The parameters Px,obtained from Eq.(6) with M--12, M--6, R 1 _ R2; R 2 = ax; r 1 -_-2 e

aX, and Ax axe listed in Ref. 12 and the coefficients NXX , Nxy , MXX , and Mxy are obtained from the

number of nearest and next-nearest neighbors of each species for all the possible structures AmB4_ m. The excess
energy, AEm(r), as a function of the lattice parameter r is easily computed with Eq. (2) and, following

Connolly-Williams approach (13), the heat of formation is obtained from

AED(r'x) = E {:} xm(1 - x)'-m AEm(r) {8)
m

by finding, for each concentration x, the value of r that minimizes AED(r,x ). For different alloys A - B, the

parameters AAB and ABA were determined by reproducing the experimental heats of solution EBA and

EAB. In Table I, we list the parameters Aij for some binary alloys of At, Ni, Cu, Au, Pd, Pt, and A1,

Table I. Experimental values of the heats of solution EAB and EBA used to determine

the parameters AAB and ABA for some binary alloys of A1, Cu, Ni, At, Au, Pd, and Pt.

A B EAB EBA AAB ABA

Ni Pd -0.088 0.057 -0.0401 -0.04665

Cu Ni 0.09 0.03 -0.0131 0.02395

Cu Pd -0.392 -0.436 -0.04205 -0.04795

Au Pd -0.195 -0.355 -0.0439 -0.0348

A B EAB EBA AAB ABA

Ag Pd -0.108 -0.289 -0.0431 -0.02033

Cu Pt -0.299 -0.532 -0.0568 -0.0444

Ag Au -0.16 -0.19 -0.0313 -0.0219

Cu Ag 0.25 0.39 -0.0321 -0.0394

Ni Pt -0.330 -0.282 -0.0603 -0.0529 Cu Au -0.126 -0.19 -0.0588 -0.05095

Cu A1 -0.20 -0.35 -0.0626 -0.0526 Ni Au 0.22 0.28 -0.0614 -0.0512

as well as the experimental heats of solution used in this work. The experimental heats of solution are estimated
from the experimental heats of formation curves in Ref. 14. A complete list of the parameters needed to

calculate defect energies once the geometry and composition are known, and can be found in Ref. 12. In order

to apply the method for a specific defect, e.g., a surface, one needs only know the position of each atom and the

nature of their neighbors (i.e., A or B).



In Fig. 1 we show results for Ni-Cu, Cu-Pd, Ni-Pd chosen because of the different behavior exhibited by

each one of these compounds. We display the heat of formation, compared to experiment (14), and the lattice

parameter obtained with our approach. Figure 2 shows our predictions for the lattice parameter of other binary

systems. We also compare these results with experiment (10) and Vegard's law (9). Note that our method

is able to reproduce the particular features of the Ag-Au system, where, for a certain range of concentrations,

the lattice parameter shows a contraction from the equilibrium lattice parameter of the pure components (10).
We reproduce this exceptional behavior rather accurately, which is surprising since we are dealing with

differences of hundredths of angstroms. In all cases, the agreement with experiment is excellent. In Figs. l(a)

and l(b) we also present a comparison with an appropriate version of the embedded atom method (EAM) (4,16),
Miedema's empirical approach (15) and experiment (14), for Ni-Pd. There is another EAM calculation of Ni-

Pd (5). However, the parameterization used there is different from the original EAM formulation for alloys (8).

In conclusion, we have developed a new semiempirical procedure for the concentration dependence of the

heats of formation and lattice parameters of binary alloys consistent with ECT. This method accurately predicts
the experimental behavior qualitatively and quantitatively.
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Figure 1 .---(Left column) Comparison between the heat of formation as
a function of concentration for Ni-Pd, Cu-Ni and Cu-Pd alloys: the
solid curve indicates the results obtained in this work and the solid

squares indicate the experimental values. The Ni-Pd figure also
d splays the results obtained with Miedema's approach (dashed
curve) and Johnson s EAM (4,16) results (clash-dot curve). (Right
column) comparison of lattice parameters of Ni-Pd, Cu-Ni and Cu-Pd
alloys as obtained in this work (solid line) and the corresponding
experimental values (solid squares). The Ni-Pd figure also displays
the results obtained with Miedema's approach (dashed curve) and

Johnson's EAM (4,16)results (dash-dot curve).
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Figure 2.--Comparison between experimental values (solid squares) and the
results obtained with this approach (solid lines) for the lattice parameter of
several binary alloys of Ag, Ni AI, Au, Pd, Cu, and Pt. The results predicted
by Vegard's law (dashed line) are also shown.
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